

Design of Off-Shore Wind Power Plant Electrical Systems using Fractional Frequency Transmission

Sameer Sheikh Kulkarni

Ballarpur Institute of Technology, Bamni, Ballarpur, Maharashtra, India

ABSTRACT: The increasing demand for renewable energy has accelerated the development of offshore wind power plants, which present unique challenges for electrical system design due to their remote locations and harsh marine environments. Traditional power transmission methods often face limitations related to efficiency, stability, and infrastructure costs when applied offshore. This paper explores the application of **Fractional Frequency Transmission (FFT)** techniques in the design of electrical systems for offshore wind farms, aiming to enhance power transfer efficiency, reduce transmission losses, and improve grid integration.

FFT is a novel approach that utilizes fractional multiples of the base frequency (e.g., 12.5 Hz, 16.67 Hz), enabling the decoupling of transmission and generation frequencies. This allows for more flexible operation of wind turbine generators and can reduce mechanical stresses on equipment. The paper analyzes the electrical system configuration of offshore wind farms utilizing FFT, comparing it with conventional AC and HVDC transmission systems based on criteria such as system stability, power quality, reliability, and cost-effectiveness.

Using simulation models reflecting typical offshore wind farm layouts and electrical configurations, the study evaluates FFT's performance under different loading and fault scenarios. The results indicate that FFT can offer improved dynamic response and fault tolerance compared to traditional systems. Additionally, the fractional frequency approach simplifies transformer design, enhances insulation coordination, and allows for smaller, lighter electrical components, which is critical in offshore installations.

The findings suggest that adopting FFT for offshore wind power plant electrical systems is a promising strategy to overcome current limitations in offshore power transmission. The study concludes with recommendations for integrating FFT into future offshore wind projects and highlights areas for further research, including control system optimization and long-term reliability assessment.

KEYWORDS: Offshore Wind Power, Fractional Frequency Transmission, Electrical System Design, Renewable Energy, Power Transmission, Grid Integration

I. INTRODUCTION

Offshore wind power plants have emerged as a vital component in the global transition towards renewable energy, providing large-scale electricity generation with minimal environmental impact. However, designing electrical systems for these installations presents significant challenges due to the unique environmental and operational conditions encountered offshore. These challenges include the need for efficient power transmission over long distances, exposure to corrosive marine atmospheres, and limited accessibility for maintenance.

Traditional offshore wind power plants typically use alternating current (AC) transmission at the standard grid frequency (50 Hz or 60 Hz) or high-voltage direct current (HVDC) transmission for long-distance power delivery. While HVDC offers advantages in reduced losses and stability, it also requires expensive converter stations and complex control strategies. AC transmission, meanwhile, suffers from reactive power issues and limitations in distance without voltage boosting.

In 2018, **Fractional Frequency Transmission (FFT)** emerged as an innovative concept aimed at addressing these challenges by transmitting power at frequencies that are fractions of the standard grid frequency. This approach allows for decoupling the mechanical and electrical frequencies within the system, thereby enabling wind turbines to operate at their optimal speeds independently of the grid frequency. Such decoupling reduces mechanical wear and enhances system flexibility.

This paper investigates the design and performance of offshore wind power plant electrical systems utilizing fractional frequency transmission. It evaluates how FFT affects power quality, system stability, and infrastructure requirements. By comparing FFT-based systems with conventional AC and HVDC counterparts through simulation and analysis, the study seeks to demonstrate the benefits and practical considerations of integrating FFT in offshore wind applications.

The research aims to provide insights that will guide engineers and planners in developing more efficient, reliable, and cost-effective offshore wind power electrical systems, supporting the global push for sustainable energy solutions.

II. LITERATURE REVIEW

The design of offshore wind power plant electrical systems has attracted extensive research due to the increasing penetration of renewable energy and the inherent challenges of marine environments. By 2018, significant progress had been made in traditional transmission technologies and innovative concepts such as Fractional Frequency Transmission (FFT).

Conventional AC transmission systems dominate offshore wind farms, operating at standard grid frequencies (50/60 Hz). However, long submarine cables face limitations due to capacitive charging currents and reactive power issues, restricting feasible transmission distances without compensation (T. Ackermann et al., 2017). High-voltage direct current (HVDC) systems have been widely explored to overcome these limitations, providing low-loss transmission over long distances with enhanced stability. Despite this, HVDC systems entail high initial capital costs and require sophisticated converter stations (B. Kroposki et al., 2018).

Fractional Frequency Transmission, a concept inspired by variable-frequency power systems and flexible AC transmission technologies (FACTS), was proposed to further improve offshore wind plant electrical designs. FFT operates by transmitting power at frequencies that are fractional multiples of the base grid frequency, allowing mechanical and electrical subsystems to operate asynchronously. This enables optimized turbine speed control, reduces mechanical stress, and simplifies electrical infrastructure requirements (S. Zhang et al., 2018).

Research from 2017-2018 highlighted that FFT systems can reduce transformer size, mitigate insulation stress, and improve fault tolerance compared to conventional approaches. Simulations demonstrated that FFT could maintain voltage stability and reduce transmission losses in offshore scenarios with multiple turbines (Y. Wang et al., 2018).

Despite promising theoretical and simulation results, practical implementation challenges of FFT remain, including control complexity, standards compatibility, and integration with existing grid infrastructure. Studies emphasize the need for further research on control strategies and long-term reliability.

In summary, the literature shows that while conventional AC and HVDC systems remain dominant, FFT presents a compelling alternative with potential advantages in efficiency and mechanical-electrical decoupling for offshore wind power plants.

III. RESEARCH METHODOLOGY

This study employs a simulation-based approach combined with comparative analysis to investigate the design of offshore wind power plant electrical systems utilizing Fractional Frequency Transmission (FFT).

System Modeling:

A detailed model of an offshore wind power plant was developed using MATLAB/Simulink and PSCAD software, incorporating typical turbine generator parameters, submarine cable characteristics, transformers, and control systems. Three system configurations were modeled:

1. Traditional AC transmission at 50 Hz,
2. HVDC transmission with Voltage Source Converters (VSC),
3. Fractional Frequency Transmission (e.g., 12.5 Hz operation).

Simulation Scenarios:

Each configuration was tested under various operating conditions, including normal steady-state power transfer, transient disturbances such as faults (short circuits), and variable wind generation profiles. The simulations captured voltage stability, power losses, fault ride-through capability, and system dynamic responses.

Performance Metrics:

- Transmission efficiency (losses in cables and transformers),
- Voltage and frequency stability under steady and transient conditions,
- Fault tolerance and system recovery times,
- Transformer size and insulation requirements,
- Cost and complexity of infrastructure components.

Data Analysis:

Simulation outputs were analyzed to compare system behaviors. Emphasis was placed on evaluating FFT's ability to reduce mechanical stress by decoupling frequencies and its effect on electrical system sizing and stability. The study also considered practical aspects such as control system complexity and grid compatibility.

Validation:

Results were cross-validated against existing 2018 literature benchmarks on offshore wind power transmission technologies to ensure accuracy.

This methodology enables a thorough evaluation of FFT against established transmission methods, offering insights into its benefits and limitations in offshore wind power applications.

IV. RESULTS AND DISCUSSION

The simulation results demonstrate that Fractional Frequency Transmission (FFT) offers distinct advantages for offshore wind power plant electrical systems when compared to traditional AC and HVDC configurations.

- **Transmission Efficiency:** FFT systems exhibited reduced transmission losses due to the ability to operate at lower fractional frequencies, which decreases the skin effect and dielectric losses in submarine cables.
- **Transformer Design:** Lower operating frequencies enabled the use of smaller, lighter transformers with less insulation stress, significantly reducing offshore platform weight and cost.
- **System Stability:** FFT improved voltage stability under transient disturbances, with faster fault clearance and better ride-through capabilities demonstrated during short circuit events.
- **Mechanical-Electrical Decoupling:** The asynchronous operation allowed wind turbines to run at optimal mechanical speeds independently of grid frequency, reducing mechanical wear and improving turbine longevity.

However, FFT systems introduced increased control complexity, requiring sophisticated frequency conversion and synchronization equipment. Integration with standard grid frequencies demands robust frequency conversion interfaces, posing challenges for interoperability.

Compared to HVDC, FFT avoids expensive converter stations but may not match HVDC's long-distance transmission efficiency for ultra-long submarine cables. Compared to conventional AC systems, FFT offers enhanced stability and reduced infrastructure size.

Overall, the study validates FFT as a promising technology for medium-distance offshore wind power transmission, balancing efficiency, cost, and system flexibility.

V. CONCLUSION

This paper has analyzed the application of Fractional Frequency Transmission in offshore wind power plant electrical systems, comparing it with traditional AC and HVDC transmission methods. Simulation studies reveal that FFT can significantly improve transmission efficiency, reduce transformer size, enhance voltage stability, and enable decoupled turbine operation, which may extend equipment life and reduce maintenance costs.

While FFT introduces control complexity and requires careful integration with existing grid infrastructure, its benefits position it as a viable alternative for offshore wind farms, particularly those at medium distances from shore.

The findings support the further exploration and development of FFT-based electrical systems to meet the growing global demand for renewable offshore energy, advancing both technological innovation and cost reduction.

VI. FUTURE WORK

Future research should focus on:

- **Control System Development:** Designing advanced control algorithms for seamless frequency conversion, synchronization, and fault management in FFT systems.
- **Grid Integration Strategies:** Exploring how FFT can be integrated with existing grid standards and protocols to ensure interoperability and reliability.
- **Prototype Deployment:** Building pilot-scale FFT transmission systems in offshore wind farms to validate simulation results under real-world conditions.
- **Reliability and Maintenance:** Long-term studies on the operational reliability and maintenance requirements of FFT electrical components in marine environments.
- **Cost-Benefit Analysis:** Comprehensive economic assessments comparing lifecycle costs of FFT, AC, and HVDC systems in various offshore scenarios.

REFERENCES

1. Ackermann, T., & Söder, L. (2017). Wind Power in Power Systems. *Wiley*.
2. Kroposki, B., et al. (2018). Integrating High Levels of Renewable Energy into Electric Power Systems. *IEEE Power and Energy Magazine*, 16(3), 24–32.
3. Zhang, S., et al. (2018). Fractional Frequency Transmission for Offshore Wind Farms: Concept and Performance Analysis. *Energy*, 158, 389–398. <https://doi.org/10.1016/j.energy.2017.12.051>
4. Wang, Y., et al. (2018). Voltage Stability Analysis of Offshore Wind Farm Transmission Systems Using Fractional Frequency Transmission. *IEEE Transactions on Power Systems*, 33(4), 4321–4330. <https://ieeexplore.ieee.org/document/8325246>