@O gle Scholar

@creative
commons

OPEN aACCESS

INTERNATIONAL JOURNAL OF
INFORMATION TECHNOLOGY

Publishing Refereed Research Article, Survey Articles and Technical Notes.

Journal ID: 4971 6785

IAEME Publication

Chennai, India
editor@iaeme.com/ iaemedu@gmail.com

https://iaeme.com/Home/journal/1JIT

International Journal of Information Technology (1JIT)

Volume 6, Issue 1, January-June 2025, pp. 123-135, Article ID: IJIT 06 01 010
Available online at https://iaeme.com/Home/issue/IJIT?Volume=6&Issue=1
ISSN Online: 2251-2809; Journal ID: 4971-6785

Impact Factor (2025): 16.10 (Based on Google Scholar Citation)

DOI: https://doi.org/10.34218/1JIT_06 01 010

SCOPE
DATABASE OPEN ACCESS

INDEXED

© IAEME Publication

BUILDING MODULAR WEB PLATFORMS
WITH MICRO-FRONTENDS AND DATA LAYER
ABSTRACTION: A CASE STUDY IN
ENTERPRISE MODERNIZATION

Chandra Shekar Chennamsetty
Principal Software Engineer, Autodesk Inc, USA.

ABSTRACT

In the era of rapid digital transformation, enterprises are increasingly seeking
scalable and maintainable web architectures to support evolving business
requirements. Traditional monolithic web platforms often hinder agility and innovation
due to tightly coupled components and complex deployment pipelines. This research
explores the design and implementation of a modular web platform leveraging micro-
frontends and data layer abstraction, demonstrated through a real-world enterprise
modernization case study. By decomposing the frontend into independently deployable
units and introducing a unified data access layer, the proposed architecture enables
parallel development, enhances scalability, and streamlines integration with legacy and
cloud-native systems. The case study also incorporates a custom internal data-sharing
framework built on Redux with a publish-subscribe model, as well as performance
tooling through SpeedCurve, Dynatrace, and Splunk. A 2-second page load time goal
was met by leveraging CDN-based micro-frontend delivery and optimized data-fetching
techniques. The architecture further utilizes AWS Lambda and ECS Fargate for

scalable backend service deployment. Quantitative metrics—including deployment

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

frequency, frontend load performance, and build time—are used to evaluate the impact.
The findings underscore the practical benefits and architectural considerations of
adopting micro-frontend patterns and data abstraction layers in large-scale enterprise

web modernization initiatives.

Keywords: Micro-Frontends, Data Layer Abstraction, Modular Web Architecture,
Enterprise Modernization, Frontend Decomposition, Web Platform Scalability, API
Integration, Legacy System Modernization, Case Study, Digital Transformation, CDN
Deployment, Redux Pub-Sub.

Cite this Article: Chandra Shekar Chennamsetty. (2025). Building Modular Web
Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in Enterprise
Modernization. International Journal of Information Technology (IJIT), 6(1), 123-135.

DOI: https://doi.org/10.34218/1JIT_06 01 010

1. Introduction

As enterprises strive for agility and scalability in their digital platforms, legacy monolithic
web architectures are proving increasingly inadequate. These systems, characterized by tight
coupling and centralized deployment pipelines, hinder innovation and responsiveness to
business needs.

Modern approaches like micro-frontends and data layer abstraction offer a solution by
breaking down the frontend into independently deployable components and decoupling the
frontend from backend complexities. Micro-frontends (MFEs) apply microservices principles
to the user interface by enabling modular and domain-oriented development. This
decomposition allows teams to build and deploy UI modules autonomously while maintaining
independent release cycles.

A unified data access layer simplifies integration with diverse services and systems,
ensuring that frontend modules fetch only the data they require.

This paper presents a case study of an enterprise modernization effort where a monolithic
web platform was re-architected using these principles. The new modular design enabled faster
development, improved maintainability, and seamless integration with both legacy and cloud-
native services.

We outline the architecture, implementation strategy, and results, supported by

performance metrics and system benchmarks. Key contributions include practical insights into

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Chandra Shekar Chennamsetty

adopting micro-frontends, an internal data-sharing framework using Redux and publish-

subscribe patterns, and a robust data abstraction layer for large-scale enterprise environments.

2. Technical Foundations and Literature Review

The architectural evolution from monolithic to modular systems has been a focal point in
modern software engineering. Monolithic applications, although simple to develop initially,
become increasingly difficult to scale and maintain as complexity grows. These limitations have
driven the adoption of modular approaches such as microservices and, more recently, micro-
frontends.

Micro-frontends enable the decomposition of a frontend monolith into smaller,
independent units that can be developed, tested, and deployed separately by different teams.
This approach promotes parallel development, independent releases, technology diversity, and
reduces the risk of system-wide regressions.

A micro-frontend typically corresponds to a bounded business domain (e.g., user profile
or reporting) and is composed at runtime via frameworks such as Webpack Module Federation
or Single-SPA.

In parallel, data layer abstraction provides a unified interface between frontend modules
and backend services. By introducing an abstraction layer—often implemented using GraphQL,
API gateways, or Backend-for-Frontend (BFF) patterns—teams can isolate data concerns from
presentation logic. This allows for better maintainability, security enforcement, and easier
adaptation to backend changes without impacting the frontend.

Several frameworks and tools have emerged to support these patterns:

e Single-SPA and Webpack Module Federation for micro-frontend composition
e GraphQL and Apollo Federation for unified data access

o API gateways like AWS API Gateway, Kong, or Apigee for service mediation
e SpeedCurve, Dynatrace, and Splunk for performance monitoring and

diagnostics

Recent research and industry case studies have demonstrated the benefits of modular
architectures in improving deployment frequency, reducing time-to-market, and enabling
distributed team collaboration. However, challenges remain in dependency management,

shared state coordination, performance optimization, and governance at scale.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

3. Architectural Design and Methodology

The modernized platform architecture was designed with two core principles: modularity
and independence. The goal was to decouple both the frontend and backend components to
allow autonomous development, faster deployment, and better scalability. This was achieved
using a combination of micro-frontend architecture and a data layer abstraction strategy.
3.1 Micro-Frontend Composition

The frontend was decomposed into discrete, independently deployable modules aligned
with business domains. Each micro-frontend was developed by a dedicated team and integrated
at runtime using Webpack Module Federation and Single-SPA.
Key architectural features:

o Independent Deployment Pipelines

o Shared Component Libraries for consistency

e CDN Publication of MFEs for faster delivery and broader availability

e Runtime Integration via dynamic loading to ensure flexibility and low coupling
3.2 Data Layer Abstraction

To isolate the frontend from backend complexity, a Backend-for-Frontend (BFF) pattern
was implemented using GraphQL and REST services, mediated through AWS API Gateway.

e GraphQL enabled flexible, tailored queries and reduced over-fetching

e Legacy REST services were abstracted and proxied behind the gateway

e Centralized security and request throttling were enforced
3.3 Internal Data Sharing Framework

A proprietary data-binding framework was built as a wrapper around Redux, designed to
facilitate inter-MFE communication using a publish-subscribe model.

o Each MFE used dedicated data providers—modular JavaScript components that

dynamically load, fetch data, and prepare it for use
e These modules run independently and publish structured data to the Redux store
e MFEs subscribe to the appropriate Redux slices, ensuring seamless state
synchronization

This internal framework enabled loosely coupled, on-demand data exchange while
maintaining high performance and testability.
3.4 Deployment and CI/CD Pipeline

Deployment was automated using GitHub Actions and Docker-based pipelines, with

services deployed to AWS ECS Fargate and AWS Lambda.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Chandra Shekar Chennamsetty

e Each micro-frontend had its own pipeline

e Dockerized builds ensured parity across environments

e Integration testing was decoupled

o Lambda functions were used for lightweight backend tasks and API responses
3.5 System Architecture Diagram

Below is a simplified representation of the system architecture

GraphQL
BFF

REST
Services

Y

Micro-Frontend Containers
(Runtime Integration)

User Dashboard| |Analytics| | Settings

4. Case Study — Enterprise Web Modernization
4.1 Organization Context and Challenges
The enterprise, operating in the financial services sector, relied on a monolithic web
application. Key issues included:
e Long deployment cycles and update downtime
e Tight frontend-backend coupling
e Inhibited team parallelism
e Poor component scalability
4.2 Modernization Objectives
e Enable modular UI deployment

e Introduce data abstraction via BFF

https://iaeme.com/Home/journal/IJIT @ editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

e Preserve legacy integrations
e Achieve 2-second page load target
e Publish modules to CDN for fast delivery
4.3 Solution Architecture
e Frontend: MFEs built in React, composed with Webpack Module Federation
e Backend: GraphQL BFF layered over REST services
o Infrastructure: Deployed via Lambda and ECS Fargate

e Observability: Instrumented with SpeedCurve, Dynatrace, and Splunk

4.4 Implementation Timeline

Phase Duration Key Activities
Discovery 4 weeks Platform audit, domain decomposition
MVP Development || 8 weeks Micro-frontend POC, GraphQL setup
Integration 6 weeks API Gateway config, CI/CD
Full Rollout 10 weeks Module migration, production deployment

4.5 Tools and Technologies Used

Category Technology
UI Framework React, Tailwind CSS
Micro-Frontend Webpack Module Federation, Single-SPA
Data Layer GraphQL (Apollo Server), REST
DevOps Docker, GitHub Actions, AWS ECS, AWS Lambda
API Management AWS API Gateway, JWT Auth
Observability SpeedCurve, Dynatrace, Splunk

4.6 Integration Approach

e CI/CD per module

e Shared libraries maintained via semver

e E2E tests run independently

e Monitoring through Prometheus + Grafana
4.7 Organizational Impact

e Reduced inter-team dependencies

o Legacy preserved with GraphQL layer

https://iaeme.com/Home/journal/IJIT a editor@iaeme.com

Chandra Shekar Chennamsetty

e Enhanced developer ownership and delivery pace

5. Quantitative Evaluation and Impact Analysis

To assess the effectiveness of the modular architecture, a comprehensive evaluation was
conducted comparing the system’s performance before and after modernization. The analysis

focused on deployment efficiency, application responsiveness, development velocity, and

operational scalability.

5.1 Deployment Efficiency

Metric Pre-Modernization Post-Modernization
Deployment Time 45 minutes 8 minutes/module
Downtime During Release | 20-30 minutes Zero
Deployment Frequency Weekly Daily (per module)

Graph: Deployment metrics before and after implementing micro-frontends and modular

CI/CD pipelines.

Deployment Metrics: Before vs After Modernization

Values

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

5.2 Application Performance

Measured using Lighthouse, WebPageTest, SpeedCurve, and Dynatrace.

‘ Metric H Before H After H Improvement ‘
| TTFB || 1.5sec || 900 ms || ~40% |
[FCP |[32sec | 1.8sec | ~44% |
‘ LCP H 4.8 sec H 2.3 sec H ~52% ‘

5.3 Development Velocity

Metric Monolithic Modular
Feature Rollout Time 4-6 weeks 2-3 weeks
Concurrent Teams 1-2 4-5
Merge Conflicts High Low

5.4 Scalability and Fault Isolation
e Modules scaled horizontally
e Analytics failure didn’t impact dashboard/user profile

o Fallback Uls ensured continuity during backend failures

5.5 Summary
Micro-frontend architecture combined with BFF and CDN deployment resulted in faster

performance, better reliability, and improved delivery cadence.

6. Engineering Insights and Lessons Learned

The transition from a tightly coupled monolithic architecture to a modular, micro-
frontend-based system required not just technical changes, but a strategic rethinking of
development practices, team structures, and deployment governance. This section presents a
deeper examination of the key challenges, practices adopted, and lessons learned across
several dimensions of the transformation.
6.1 Micro-Frontend Complexity Management

While micro-frontends (MFEs) enabled teams to develop and deploy independently, the
distributed nature of this architecture introduced new complexities that had to be carefully

managed.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Chandra Shekar Chennamsetty

o Shared State Isolation and Coordination
MFEs operated as self-contained units, but certain application-level states (e.g., user
authentication, global preferences, feature flags) needed to be shared across modules.
A lightweight internal publish-subscribe framework built on Redux was
introduced. This framework acted as a bridge between MFEs using decoupled, event-
driven communication, which avoided tight integration while still allowing data
sharing.

o Styling Conflicts and Namespace Collisions
CSS conflicts across MFEs were initially problematic due to shared DOM space. This

was mitigated using:

o CSS Modules for locally scoped class names

o Shadow DOM for true encapsulation in custom elements where
necessary

o Global design tokens via a central design system to maintain consistent
theming

e Cross-Team UI Consistency
As different teams developed different MFEs, enforcing a uniform user experience
was a challenge. A centralized design system, linters, and Storybook-driven Ul
development were adopted to ensure pixel-perfect consistency and code hygiene.

e Performance Optimization Across MFEs
Runtime integration of MFEs resulted in increased initial bundle sizes. Techniques
like lazy loading, tree shaking, and async imports were introduced to ensure that
each MFE only loaded what it needed when it was needed, minimizing FCP and LCP

timings.

6.2 Data Abstraction Layer Design
The data abstraction layer, implemented using GraphQL in a BFF pattern, was a
cornerstone of frontend-backend decoupling. While powerful, it required thoughtful
engineering to achieve performance and security goals.
e Granular Access and Authorization
To prevent overexposure of data, role-based access control (RBAC) policies were
enforced both at the API Gateway layer and within GraphQL resolvers. Auth tokens
(JWT) were validated centrally, and permission scopes dictated data visibility at field-

level granularity.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

e Query Overhead and Optimization

Early GraphQL usage led to over-fetching and inefficient queries. Through:

o Query usage analytics from Apollo Studio
o Query whitelisting for production environments
o Data loader patterns and response caching

the team significantly reduced redundant API calls and backend load.

e Legacy System Integration
Wrapping legacy REST APIs with GraphQL resolvers allowed incremental backend
modernization. This approach enabled gradual migration without breaking frontend
contracts. Proxying through AWS API Gateway also allowed monitoring, throttling,

and transformation of legacy responses into modern schemas.

6.3 DevOps and CI/CD Maturity
A distributed architecture required a more mature and scalable DevOps strategy, which
evolved significantly during the project lifecycle.

e Template-Driven Pipelines
With 10+ independently deployable MFEs, managing CI/CD pipelines became a
bottleneck. The team adopted templated GitHub Actions workflows using shared
YAML includes, reducing duplication and standardizing build logic.

e Version Management
Shared component libraries were managed using semantic versioning (semver) with
changelogs and automated release tagging. This ensured backward compatibility and
allowed MFEs to opt-in to new features safely.

« Safe Rollouts
Feature flags, canary deployments, and blue-green environments were used to
validate changes before full-scale releases. Errors could be rolled back without
affecting the entire platform.

e Observability
SpeedCurve, Dynatrace, Splunk, and Prometheus were used for:
o Monitoring app performance (TTFB, FCP, LCP)
o Alerting on regressions
o Tracking errors and user journeys

This observability layer proved crucial in maintaining system health post-deployment.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Chandra Shekar Chennamsetty

6.4 Organizational Considerations
The architectural shift also necessitated a transformation in how teams were structured,
how ownership was defined, and how alignment was maintained.
e Domain-Oriented Team Ownership
Teams were restructured to align with business domains rather than technical layers. Each
team owned the full lifecycle of a domain’s MFE — from design and development to
deployment and monitoring.
e Decentralized Governance with Central Guardrails

While autonomy was encouraged, a central architecture review board provided guardrails

around:

o API schema changes

o Shared library updates

o Security and access patterns

e Skill Development

Moving to this architecture required engineers to learn:

o Module Federation

o GraphQL schema design

o Observability tooling

o Docker and cloud-native deployment (Lambda, Fargate)

e Cross-Functional Collaboration
Weekly cross-team demos, shared retrospectives, and architecture guilds helped prevent

knowledge silos and fostered a culture of open experimentation and alignment.

6.5 Key Takeaways

e Modularization requires more discipline, not less
While modular MFEs give teams autonomy, they demand stronger standards for
integration, testing, and communication.

» Data abstraction is a strategic enabler
Beyond performance improvements, abstracting data through GraphQL and BFF
enabled faster backend evolution and reduced change ripple effects.

e Observability must be baked in early
Instrumentation with tools like Splunk and Dynatrace allowed real-time feedback

loops, making it easier to detect and resolve issues rapidly.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in
Enterprise Modernization

e Architecture and culture evolve together
The technical success of micro-frontends was deeply tied to team autonomy, skill

development, and governance mechanisms that encouraged safe innovation.

7. Conclusion

This case study demonstrated how transitioning from a monolithic web architecture to a
modular system using micro-frontends and data layer abstraction can lead to significant
improvements in scalability, development velocity, and maintainability. By enabling
independently deployable Ul modules and decoupling frontend logic from backend
complexities, the architecture supported parallel development and faster time-to-market, while
reducing deployment risks and inter-team dependencies.

Key innovations included the use of Webpack Module Federation for runtime
composition, GraphQL-based Backend-for-Frontend (BFF) for streamlined data access, and a
custom internal data-sharing framework built on Redux with a publish-subscribe model.
Performance goals such as a 2-second page load time were met through optimized loading
strategies, CDN distribution of micro-frontends, and observability tools like Splunk, Dynatrace,
and SpeedCurve. Additionally, deployment via AWS Lambda and ECS Fargate ensured
scalable, cloud-native service delivery.

Ultimately, the success of this modernization was not solely technical but organizational.
The shift required new team structures, governance models, and DevOps practices that
emphasized autonomy with alignment. The approach serves as a practical blueprint for large
enterprises aiming to modernize digital platforms incrementally while maintaining stability and

delivering continuous value to end users.

References

[1] M. Tillmann and J. Vogel, "Micro-Frontend Architectures: State of the Art, Challenges,
and Opportunities," Proceedings of the IEEE International Conference on Software

Architecture, 2022.

[2] Z. Liu, R. A. Maximo, and A. Garcia, "An Empirical Study on the Use of Module
Federation in Frontend Applications," ACM SIGSOFT Software Engineering Notes,
vol. 48, no. 2, 2023.

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

Chandra Shekar Chennamsetty

[3] Y. Hartono, "Micro-Frontend Design in Practice," in 2022 IEEE Conference on Web
Engineering, pp. 92—-101.

[4] Amazon Web Services, “Best Practices for Microservice Architectures.” [Online].

Available: https://aws.amazon.com/microservices/

[5] Splunk Inc., “Observability with Splunk: Real-Time Monitoring for Modern
Applications.” [Online]. Available: https://www.splunk.com/en_us/observability.html

[6] SpeedCurve Ltd., “SpeedCurve: Monitor Frontend Performance and User Experience.”

[Online]. Available: https://www.speedcurve.com/

[7] Dynatrace LLC, “Dynatrace: AlI-Powered Observability Platform.” [Online]. Available:

https://www.dynatrace.com/.

@ltion: Chandra Shekar Chennamsetty. (2025). Building Modular Web Platforms with Micro—Frontendsm
Data Layer Abstraction: A Case Study in Enterprise Modernization. International Journal of Information
Technology (IJIT), 6(1), 123-135.

Abstract Link: https://iaeme.com/Home/article id/IJIT 06 01 010

Article Link:
https://iaeme.com/MasterAdmin/Journal uploads/IJIT/VOLUME 6 ISSUE 1/IJIT 06 01 010.pdf

Copyright: © 2025 Authors. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

—G)
Creative Commons license: Creative Commons license: CC BY 4.0 @ BY

@editor@iaeme.com /

https://iaeme.com/Home/journal/IJIT editor@iaeme.com

