

https://iaeme.com/Home/journal/IJIT 123 editor@iaeme.com

International Journal of Information Technology (IJIT)

Volume 6, Issue 1, January-June 2025, pp. 123-135, Article ID: IJIT_06_01_010

Available online at https://iaeme.com/Home/issue/IJIT?Volume=6&Issue=1

ISSN Online: 2251-2809; Journal ID: 4971-6785

Impact Factor (2025): 16.10 (Based on Google Scholar Citation)

DOI: https://doi.org/10.34218/IJIT_06_01_010

© IAEME Publication

BUILDING MODULAR WEB PLATFORMS

WITH MICRO-FRONTENDS AND DATA LAYER

ABSTRACTION: A CASE STUDY IN

ENTERPRISE MODERNIZATION

Chandra Shekar Chennamsetty

Principal Software Engineer, Autodesk Inc, USA.

ABSTRACT

In the era of rapid digital transformation, enterprises are increasingly seeking

scalable and maintainable web architectures to support evolving business

requirements. Traditional monolithic web platforms often hinder agility and innovation

due to tightly coupled components and complex deployment pipelines. This research

explores the design and implementation of a modular web platform leveraging micro-

frontends and data layer abstraction, demonstrated through a real-world enterprise

modernization case study. By decomposing the frontend into independently deployable

units and introducing a unified data access layer, the proposed architecture enables

parallel development, enhances scalability, and streamlines integration with legacy and

cloud-native systems. The case study also incorporates a custom internal data-sharing

framework built on Redux with a publish-subscribe model, as well as performance

tooling through SpeedCurve, Dynatrace, and Splunk. A 2-second page load time goal

was met by leveraging CDN-based micro-frontend delivery and optimized data-fetching

techniques. The architecture further utilizes AWS Lambda and ECS Fargate for

scalable backend service deployment. Quantitative metrics—including deployment

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 124 editor@iaeme.com

frequency, frontend load performance, and build time—are used to evaluate the impact.

The findings underscore the practical benefits and architectural considerations of

adopting micro-frontend patterns and data abstraction layers in large-scale enterprise

web modernization initiatives.

Keywords: Micro-Frontends, Data Layer Abstraction, Modular Web Architecture,

Enterprise Modernization, Frontend Decomposition, Web Platform Scalability, API

Integration, Legacy System Modernization, Case Study, Digital Transformation, CDN

Deployment, Redux Pub-Sub.

Cite this Article: Chandra Shekar Chennamsetty. (2025). Building Modular Web

Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in Enterprise

Modernization. International Journal of Information Technology (IJIT), 6(1), 123-135.

DOI: https://doi.org/10.34218/IJIT_06_01_010

1. Introduction

As enterprises strive for agility and scalability in their digital platforms, legacy monolithic

web architectures are proving increasingly inadequate. These systems, characterized by tight

coupling and centralized deployment pipelines, hinder innovation and responsiveness to

business needs.

Modern approaches like micro-frontends and data layer abstraction offer a solution by

breaking down the frontend into independently deployable components and decoupling the

frontend from backend complexities. Micro-frontends (MFEs) apply microservices principles

to the user interface by enabling modular and domain-oriented development. This

decomposition allows teams to build and deploy UI modules autonomously while maintaining

independent release cycles.

A unified data access layer simplifies integration with diverse services and systems,

ensuring that frontend modules fetch only the data they require.

This paper presents a case study of an enterprise modernization effort where a monolithic

web platform was re-architected using these principles. The new modular design enabled faster

development, improved maintainability, and seamless integration with both legacy and cloud-

native services.

We outline the architecture, implementation strategy, and results, supported by

performance metrics and system benchmarks. Key contributions include practical insights into

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 125 editor@iaeme.com

adopting micro-frontends, an internal data-sharing framework using Redux and publish-

subscribe patterns, and a robust data abstraction layer for large-scale enterprise environments.

2. Technical Foundations and Literature Review

The architectural evolution from monolithic to modular systems has been a focal point in

modern software engineering. Monolithic applications, although simple to develop initially,

become increasingly difficult to scale and maintain as complexity grows. These limitations have

driven the adoption of modular approaches such as microservices and, more recently, micro-

frontends.

Micro-frontends enable the decomposition of a frontend monolith into smaller,

independent units that can be developed, tested, and deployed separately by different teams.

This approach promotes parallel development, independent releases, technology diversity, and

reduces the risk of system-wide regressions.

A micro-frontend typically corresponds to a bounded business domain (e.g., user profile

or reporting) and is composed at runtime via frameworks such as Webpack Module Federation

or Single-SPA.

In parallel, data layer abstraction provides a unified interface between frontend modules

and backend services. By introducing an abstraction layer—often implemented using GraphQL,

API gateways, or Backend-for-Frontend (BFF) patterns—teams can isolate data concerns from

presentation logic. This allows for better maintainability, security enforcement, and easier

adaptation to backend changes without impacting the frontend.

Several frameworks and tools have emerged to support these patterns:

• Single-SPA and Webpack Module Federation for micro-frontend composition

• GraphQL and Apollo Federation for unified data access

• API gateways like AWS API Gateway, Kong, or Apigee for service mediation

• SpeedCurve, Dynatrace, and Splunk for performance monitoring and

diagnostics

Recent research and industry case studies have demonstrated the benefits of modular

architectures in improving deployment frequency, reducing time-to-market, and enabling

distributed team collaboration. However, challenges remain in dependency management,

shared state coordination, performance optimization, and governance at scale.

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 126 editor@iaeme.com

3. Architectural Design and Methodology

The modernized platform architecture was designed with two core principles: modularity

and independence. The goal was to decouple both the frontend and backend components to

allow autonomous development, faster deployment, and better scalability. This was achieved

using a combination of micro-frontend architecture and a data layer abstraction strategy.

3.1 Micro-Frontend Composition

The frontend was decomposed into discrete, independently deployable modules aligned

with business domains. Each micro-frontend was developed by a dedicated team and integrated

at runtime using Webpack Module Federation and Single-SPA.

Key architectural features:

• Independent Deployment Pipelines

• Shared Component Libraries for consistency

• CDN Publication of MFEs for faster delivery and broader availability

• Runtime Integration via dynamic loading to ensure flexibility and low coupling

3.2 Data Layer Abstraction

To isolate the frontend from backend complexity, a Backend-for-Frontend (BFF) pattern

was implemented using GraphQL and REST services, mediated through AWS API Gateway.

• GraphQL enabled flexible, tailored queries and reduced over-fetching

• Legacy REST services were abstracted and proxied behind the gateway

• Centralized security and request throttling were enforced

3.3 Internal Data Sharing Framework

A proprietary data-binding framework was built as a wrapper around Redux, designed to

facilitate inter-MFE communication using a publish-subscribe model.

• Each MFE used dedicated data providers—modular JavaScript components that

dynamically load, fetch data, and prepare it for use

• These modules run independently and publish structured data to the Redux store

• MFEs subscribe to the appropriate Redux slices, ensuring seamless state

synchronization

This internal framework enabled loosely coupled, on-demand data exchange while

maintaining high performance and testability.

3.4 Deployment and CI/CD Pipeline

Deployment was automated using GitHub Actions and Docker-based pipelines, with

services deployed to AWS ECS Fargate and AWS Lambda.

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 127 editor@iaeme.com

• Each micro-frontend had its own pipeline

• Dockerized builds ensured parity across environments

• Integration testing was decoupled

• Lambda functions were used for lightweight backend tasks and API responses

3.5 System Architecture Diagram

Below is a simplified representation of the system architecture

4. Case Study – Enterprise Web Modernization

4.1 Organization Context and Challenges

The enterprise, operating in the financial services sector, relied on a monolithic web

application. Key issues included:

• Long deployment cycles and update downtime

• Tight frontend-backend coupling

• Inhibited team parallelism

• Poor component scalability

4.2 Modernization Objectives

• Enable modular UI deployment

• Introduce data abstraction via BFF

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 128 editor@iaeme.com

• Preserve legacy integrations

• Achieve 2-second page load target

• Publish modules to CDN for fast delivery

4.3 Solution Architecture

• Frontend: MFEs built in React, composed with Webpack Module Federation

• Backend: GraphQL BFF layered over REST services

• Infrastructure: Deployed via Lambda and ECS Fargate

• Observability: Instrumented with SpeedCurve, Dynatrace, and Splunk

4.4 Implementation Timeline

Phase Duration Key Activities

Discovery 4 weeks Platform audit, domain decomposition

MVP Development 8 weeks Micro-frontend POC, GraphQL setup

Integration 6 weeks API Gateway config, CI/CD

Full Rollout 10 weeks Module migration, production deployment

4.5 Tools and Technologies Used

Category Technology

UI Framework React, Tailwind CSS

Micro-Frontend Webpack Module Federation, Single-SPA

Data Layer GraphQL (Apollo Server), REST

DevOps Docker, GitHub Actions, AWS ECS, AWS Lambda

API Management AWS API Gateway, JWT Auth

Observability SpeedCurve, Dynatrace, Splunk

4.6 Integration Approach

• CI/CD per module

• Shared libraries maintained via semver

• E2E tests run independently

• Monitoring through Prometheus + Grafana

4.7 Organizational Impact

• Reduced inter-team dependencies

• Legacy preserved with GraphQL layer

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 129 editor@iaeme.com

• Enhanced developer ownership and delivery pace

5. Quantitative Evaluation and Impact Analysis

To assess the effectiveness of the modular architecture, a comprehensive evaluation was

conducted comparing the system’s performance before and after modernization. The analysis

focused on deployment efficiency, application responsiveness, development velocity, and

operational scalability.

5.1 Deployment Efficiency

Metric Pre-Modernization Post-Modernization

Deployment Time 45 minutes 8 minutes/module

Downtime During Release 20–30 minutes Zero

Deployment Frequency Weekly Daily (per module)

Graph: Deployment metrics before and after implementing micro-frontends and modular

CI/CD pipelines.

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 130 editor@iaeme.com

5.2 Application Performance

Measured using Lighthouse, WebPageTest, SpeedCurve, and Dynatrace.

Metric Before After Improvement

TTFB 1.5 sec 900 ms ~40%

FCP 3.2 sec 1.8 sec ~44%

LCP 4.8 sec 2.3 sec ~52%

5.3 Development Velocity

Metric Monolithic Modular

Feature Rollout Time 4–6 weeks 2–3 weeks

Concurrent Teams 1–2 4–5

Merge Conflicts High Low

5.4 Scalability and Fault Isolation

• Modules scaled horizontally

• Analytics failure didn’t impact dashboard/user profile

• Fallback UIs ensured continuity during backend failures

5.5 Summary

Micro-frontend architecture combined with BFF and CDN deployment resulted in faster

performance, better reliability, and improved delivery cadence.

6. Engineering Insights and Lessons Learned

The transition from a tightly coupled monolithic architecture to a modular, micro-

frontend-based system required not just technical changes, but a strategic rethinking of

development practices, team structures, and deployment governance. This section presents a

deeper examination of the key challenges, practices adopted, and lessons learned across

several dimensions of the transformation.

6.1 Micro-Frontend Complexity Management

While micro-frontends (MFEs) enabled teams to develop and deploy independently, the

distributed nature of this architecture introduced new complexities that had to be carefully

managed.

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 131 editor@iaeme.com

• Shared State Isolation and Coordination

MFEs operated as self-contained units, but certain application-level states (e.g., user

authentication, global preferences, feature flags) needed to be shared across modules.

A lightweight internal publish-subscribe framework built on Redux was

introduced. This framework acted as a bridge between MFEs using decoupled, event-

driven communication, which avoided tight integration while still allowing data

sharing.

• Styling Conflicts and Namespace Collisions

CSS conflicts across MFEs were initially problematic due to shared DOM space. This

was mitigated using:

o CSS Modules for locally scoped class names

o Shadow DOM for true encapsulation in custom elements where

necessary

o Global design tokens via a central design system to maintain consistent

theming

• Cross-Team UI Consistency

As different teams developed different MFEs, enforcing a uniform user experience

was a challenge. A centralized design system, linters, and Storybook-driven UI

development were adopted to ensure pixel-perfect consistency and code hygiene.

• Performance Optimization Across MFEs

Runtime integration of MFEs resulted in increased initial bundle sizes. Techniques

like lazy loading, tree shaking, and async imports were introduced to ensure that

each MFE only loaded what it needed when it was needed, minimizing FCP and LCP

timings.

6.2 Data Abstraction Layer Design

The data abstraction layer, implemented using GraphQL in a BFF pattern, was a

cornerstone of frontend-backend decoupling. While powerful, it required thoughtful

engineering to achieve performance and security goals.

• Granular Access and Authorization

To prevent overexposure of data, role-based access control (RBAC) policies were

enforced both at the API Gateway layer and within GraphQL resolvers. Auth tokens

(JWT) were validated centrally, and permission scopes dictated data visibility at field-

level granularity.

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 132 editor@iaeme.com

• Query Overhead and Optimization

Early GraphQL usage led to over-fetching and inefficient queries. Through:

o Query usage analytics from Apollo Studio

o Query whitelisting for production environments

o Data loader patterns and response caching

the team significantly reduced redundant API calls and backend load.

• Legacy System Integration

Wrapping legacy REST APIs with GraphQL resolvers allowed incremental backend

modernization. This approach enabled gradual migration without breaking frontend

contracts. Proxying through AWS API Gateway also allowed monitoring, throttling,

and transformation of legacy responses into modern schemas.

6.3 DevOps and CI/CD Maturity

A distributed architecture required a more mature and scalable DevOps strategy, which

evolved significantly during the project lifecycle.

• Template-Driven Pipelines

With 10+ independently deployable MFEs, managing CI/CD pipelines became a

bottleneck. The team adopted templated GitHub Actions workflows using shared

YAML includes, reducing duplication and standardizing build logic.

• Version Management

Shared component libraries were managed using semantic versioning (semver) with

changelogs and automated release tagging. This ensured backward compatibility and

allowed MFEs to opt-in to new features safely.

• Safe Rollouts

Feature flags, canary deployments, and blue-green environments were used to

validate changes before full-scale releases. Errors could be rolled back without

affecting the entire platform.

• Observability

SpeedCurve, Dynatrace, Splunk, and Prometheus were used for:

o Monitoring app performance (TTFB, FCP, LCP)

o Alerting on regressions

o Tracking errors and user journeys

This observability layer proved crucial in maintaining system health post-deployment.

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 133 editor@iaeme.com

6.4 Organizational Considerations

The architectural shift also necessitated a transformation in how teams were structured,

how ownership was defined, and how alignment was maintained.

• Domain-Oriented Team Ownership

Teams were restructured to align with business domains rather than technical layers. Each

team owned the full lifecycle of a domain’s MFE — from design and development to

deployment and monitoring.

• Decentralized Governance with Central Guardrails

While autonomy was encouraged, a central architecture review board provided guardrails

around:

o API schema changes

o Shared library updates

o Security and access patterns

• Skill Development

Moving to this architecture required engineers to learn:

o Module Federation

o GraphQL schema design

o Observability tooling

o Docker and cloud-native deployment (Lambda, Fargate)

• Cross-Functional Collaboration

Weekly cross-team demos, shared retrospectives, and architecture guilds helped prevent

knowledge silos and fostered a culture of open experimentation and alignment.

6.5 Key Takeaways

• Modularization requires more discipline, not less

While modular MFEs give teams autonomy, they demand stronger standards for

integration, testing, and communication.

• Data abstraction is a strategic enabler

Beyond performance improvements, abstracting data through GraphQL and BFF

enabled faster backend evolution and reduced change ripple effects.

• Observability must be baked in early

Instrumentation with tools like Splunk and Dynatrace allowed real-time feedback

loops, making it easier to detect and resolve issues rapidly.

Building Modular Web Platforms with Micro-Frontends and Data Layer Abstraction: A Case Study in

Enterprise Modernization

https://iaeme.com/Home/journal/IJIT 134 editor@iaeme.com

• Architecture and culture evolve together

The technical success of micro-frontends was deeply tied to team autonomy, skill

development, and governance mechanisms that encouraged safe innovation.

7. Conclusion

This case study demonstrated how transitioning from a monolithic web architecture to a

modular system using micro-frontends and data layer abstraction can lead to significant

improvements in scalability, development velocity, and maintainability. By enabling

independently deployable UI modules and decoupling frontend logic from backend

complexities, the architecture supported parallel development and faster time-to-market, while

reducing deployment risks and inter-team dependencies.

Key innovations included the use of Webpack Module Federation for runtime

composition, GraphQL-based Backend-for-Frontend (BFF) for streamlined data access, and a

custom internal data-sharing framework built on Redux with a publish-subscribe model.

Performance goals such as a 2-second page load time were met through optimized loading

strategies, CDN distribution of micro-frontends, and observability tools like Splunk, Dynatrace,

and SpeedCurve. Additionally, deployment via AWS Lambda and ECS Fargate ensured

scalable, cloud-native service delivery.

Ultimately, the success of this modernization was not solely technical but organizational.

The shift required new team structures, governance models, and DevOps practices that

emphasized autonomy with alignment. The approach serves as a practical blueprint for large

enterprises aiming to modernize digital platforms incrementally while maintaining stability and

delivering continuous value to end users.

References

[1] M. Tillmann and J. Vogel, "Micro-Frontend Architectures: State of the Art, Challenges,

and Opportunities," Proceedings of the IEEE International Conference on Software

Architecture, 2022.

[2] Z. Liu, R. A. Maximo, and A. Garcia, "An Empirical Study on the Use of Module

Federation in Frontend Applications," ACM SIGSOFT Software Engineering Notes,

vol. 48, no. 2, 2023.

Chandra Shekar Chennamsetty

https://iaeme.com/Home/journal/IJIT 135 editor@iaeme.com

[3] Y. Hartono, "Micro-Frontend Design in Practice," in 2022 IEEE Conference on Web

Engineering, pp. 92–101.

[4] Amazon Web Services, “Best Practices for Microservice Architectures.” [Online].

Available: https://aws.amazon.com/microservices/

[5] Splunk Inc., “Observability with Splunk: Real-Time Monitoring for Modern

Applications.” [Online]. Available: https://www.splunk.com/en_us/observability.html

[6] SpeedCurve Ltd., “SpeedCurve: Monitor Frontend Performance and User Experience.”

[Online]. Available: https://www.speedcurve.com/

[7] Dynatrace LLC, “Dynatrace: AI-Powered Observability Platform.” [Online]. Available:

https://www.dynatrace.com/.

Citation: Chandra Shekar Chennamsetty. (2025). Building Modular Web Platforms with Micro-Frontends and

Data Layer Abstraction: A Case Study in Enterprise Modernization. International Journal of Information

Technology (IJIT), 6(1), 123-135.

Abstract Link: https://iaeme.com/Home/article_id/IJIT_06_01_010

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJIT/VOLUME_6_ISSUE_1/IJIT_06_01_010.pdf

Copyright: © 2025 Authors. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com

