Federated AI for Pediatric Healthcare: Secure Cloud IoT with DC–DC Converters, SDN, and Data Mining

Main Article Content

Joseph Christoper Raja

Abstract

The integration of Federated Artificial Intelligence (AI) with cloud-based Internet of Things (IoT) systems offers a transformative approach to pediatric healthcare supply chains. This study proposes a secure and privacy-preserving framework that leverages DC–DC converter-enabled IoT devices and Software-Defined Networking (SDN) for efficient data communication and energy optimization. By incorporating data mining techniques, the framework enables predictive analytics for resource allocation, patient monitoring, and operational decision-making while maintaining strict compliance with healthcare data privacy regulations. Experimental evaluations demonstrate improved system performance, reduced latency, and enhanced security, highlighting the potential of Federated AI to optimize pediatric healthcare operations in real-world cloud environments.

Article Details

Section

Articles

How to Cite

Federated AI for Pediatric Healthcare: Secure Cloud IoT with DC–DC Converters, SDN, and Data Mining. (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(5), 11152-11156. https://doi.org/10.15662/IJRPETM.2024.0705002

References

1. Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3, 119.

2. Kairouz, P., McMahan, H. B., Avent, B., et al. (2019). Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977.

3. Gonepally, S., Amuda, K. K., Kumbum, P. K., Adari, V. K., & Chunduru, V. K. (2023). Addressing supply chain administration challenges in the construction industry: A TOPSIS-based evaluation approach. Data Analytics and Artificial Intelligence, 3(1), 152–164.

4. Batchu, K. C. (2022). Modern Data Warehousing in the Cloud: Evaluating Performance and Cost Trade-offs in Hybrid Architectures. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 5(6), 7343-7349.

5. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., & Li, Y. (2021). A survey on federated learning systems: Vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 33(12), 3431–3458.

6. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2023). Navigating digital privacy and security effects on student financial behavior, academic performance, and well-being. Data Analytics and Artificial Intelligence, 3(2), 235–246.

7. Imteaj, A., Thakker, U., Wang, S., Li, J., & Amini, M. H. (2021). A survey on federated learning for resource-constrained IoT devices. IEEE Internet of Things Journal (survey article).

8. Pimpale, S. (2023). Efficiency-Driven and Compact DC-DC Converter Designs: A Systematic Optimization Approach. International Journal of Research Science and Management, 10(1), 1-18.

9. Bonawitz, K., Ivanov, V., Kreuter, B., et al. (2019). Practical secure aggregation for privacy-preserving machine learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

10. Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., & Wang, F. (2021). Federated learning for healthcare informatics. Journal of Healthcare Informatics Research, 5, 1–19.

11. Shaffi, S. M. (2023). The rise of data marketplaces: a unified platform for scalable data exchange and monetization. International Journal for Multidisciplinary Research, 5(3). https://doi.org/10.36948/ijfmr.2023.v05i03.45764

12. Nallamothu, T. K. (2023). Enhance Cross-Device Experiences Using Smart Connect Ecosystem. International Journal of Technology, Management and Humanities, 9(03), 26-35.

13. Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2019). Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on Selected Areas in Communications, 37(6), 1205–1221.

14. Jabed, M. M. I., Khawer, A. S., Ferdous, S., Niton, D. H., Gupta, A. B., & Hossain, M. S. (2023). Integrating Business Intelligence with AI-Driven Machine Learning for Next-Generation Intrusion Detection Systems. International Journal of Research and Applied Innovations, 6(6), 9834-9849.

15. Azmi, S. K. (2021). Delaunay Triangulation for Dynamic Firewall Rule Optimization in Software-Defined Networks. Well Testing Journal, 30(1), 155-169.

16. Imteaj, A., Shiqiang, W., et al. (2023). Federated learning for energy-constrained IoT devices: A systematic mapping study. arXiv preprint arXiv:2301.03720.

17. Low-voltage DC–DC converter review for IoT and on-chip energy: Liu, et al. (2021). A review of charge pump topologies for IoT nodes. Sensors/IEEE/MDPI (review article).

18. Konda, S. K. (2022). Strategic execution of system-wide BMS upgrades in pediatric healthcare environments. Journal of Advanced Research in Engineering and Technology, 1(2), 27–38. https://doi.org/10.34218/JARET_01_02_003.

19. Wang, Y., Sohn, S., Liu, S., & Shivade, C. (2021). Health natural language processing: methodology development and applications. JMIR Medical Informatics, 9(10), e23898.

20. Sangannagari, S. R. (2023). Smart Roofing Decisions: An AI-Based Recommender System Integrated into RoofNav. International Journal of Humanities and Information Technology, 5(02), 8-16.

21. Pranto, M. R. H., Zerine, I., Islam, M. M., Akter, M., & Rahman, T. (2023). Detecting Tax Evasion and Financial Crimes in The United States Using Advanced Data Mining Technique. Business and Social Sciences, 1(1), 1-11.

22. Chapman, W. W., Nadkarni, P. M., Hirschman, L., Denny, J. C., & Savova, G. K. (2016). Overcoming barriers to NLP for clinical text: the role of shared tasks and community. Journal of the American Medical Informatics Association, 23(6), 1101–1107.

23. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.

24. Rannikko, J., Hinkka, M., & Laiho, A. (2021). Inventory management and supply chain resilience in hospitals: A review. International Journal of Healthcare Management, 14(4), 345–357.