AI-Driven Cloud Lifecycle Framework for Risk-Aware Cybersecurity in Wireless BMS Using SVM

Main Article Content

Alexander Benjamin Charles

Abstract

This paper presents an Intelligent Cloud Lifecycle Architecture that integrates Support Vector Machine (SVM) algorithms and Wireless Building Management Systems (BMS) to enhance cybersecurity, operational intelligence, and adaptive control in smart infrastructures. The proposed framework leverages AI-driven analytics to monitor, predict, and mitigate cyber threats across the cloud lifecycle while ensuring seamless interoperability between IoT-enabled wireless nodes and centralized management systems. By combining SVM-based intrusion detection with dynamic cloud orchestration, the system achieves optimized energy usage, improved fault tolerance, and real-time risk assessment. The architecture supports scalable deployment, predictive maintenance, and continuous learning for sustainable and secure building ecosystem modernization.

Article Details

Section

Articles

How to Cite

AI-Driven Cloud Lifecycle Framework for Risk-Aware Cybersecurity in Wireless BMS Using SVM. (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 8(5), 12732-12735. https://doi.org/10.15662/IJRPETM.2025.0805007

References

1. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341–377. https://doi.org/10.1007/s11042-010-0660-6

2. Lin, T., & Zheng, Z. (2025, February). Resource-Performance Trade-offs in Open-Source Large Language Models: A Comparative Analysis of Deployment Optimization and Lifecycle Management. In 2025 8th International Symposium on Big Data and Applied Statistics (ISBDAS) (pp. 55-60). IEEE.

3. Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: state of the art and perspectives. International Scientific Conference eLearning and Software for Education, 1, 133–141.

4. Sankar, Thambireddy,. (2024). SEAMLESS INTEGRATION USING SAP TO UNIFY MULTI-CLOUD AND HYBRID APPLICATION. International Journal of Engineering Technology Research & Management (IJETRM), 08(03), 236–246. https://doi.org/10.5281/zenodo.15760884.

5. Kim, J., Park, J., & Lee, S. (2022). Immersive AR/VR technology for enhanced customer engagement in insurance services. Journal of Insurance Technology, 15(2), 123–138.

6. Konda, S. K. (2024). Zero-Downtime BMS Upgrades for Scientific Research Facilities: Lessons from NASA’s Infrared Telescope Project. International Journal of Technology, Management and Humanities, 10(04), 84-94.

7. Nguyen, T., Le, T., & Pham, D. (2021). Multi-modal deep learning for insurance claim analytics. IEEE Transactions on Industrial Informatics, 17(5), 3500–3510. https://doi.org/10.1109/TII.2020.3026912

8. Rudin, C. (2019). Stop explaining black box models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x

9. Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2020). Explainability and interpretability in machine learning models. Journal of Computer Science Applications and Information Technology, 5(1), 1–7. https://doi.org/10.15226/2474-9257/5/1/00148

10. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2019). HealthFog: An ensemble deep learning based smart healthcare system for automatic diagnosis and prognosis of diseases in cloud-fog environment. Future Generation Computer Systems, 100, 365–377. https://doi.org/10.1016/j.future.2019.05.039

11. Wang, Y., Chen, L., & Zhang, Z. (2019). Multi-modal deep learning for fraud detection in insurance. Expert Systems with Applications, 127, 204–215. https://doi.org/10.1016/j.eswa.2019.02.019

12. Dave, B. L. (2024). An Integrated Cloud-Based Financial Wellness Platform for Workplace Benefits and Retirement Management. International Journal of Technology, Management and Humanities, 10(01), 42-52.

13. Reddy, B. V. S., & Sugumar, R. (2025, April). Improving dice-coefficient during COVID 19 lesion extraction in lung CT slice with watershed segmentation compared to active contour. In AIP Conference Proceedings (Vol. 3270, No. 1, p. 020094). AIP Publishing LLC.

14. Droguett, E., & Modarres, M. (2019). A deep adversarial approach based on multi-sensor fusion for remaining useful life prognostics. arXiv preprint arXiv:1909.10246. Retrieved from https://arxiv.org/abs/1909.10246

15. Arjunan, T., Arjunan, G., & Kumar, N. J. (2025, May). Optimizing Quantum Support Vector Machine (QSVM) Circuits Using Hybrid Quantum Natural Gradient Descent (QNGD) and Whale Optimization Algorithm (WOA). In 2025 6th International Conference for Emerging Technology (INCET) (pp. 1-7). IEEE

16. Pranto, M. R. H., Zerine, I., Islam, M. M., Akter, M., & Rahman, T. (2023). Detecting Tax Evasion and Financial Crimes in The United States Using Advanced Data Mining Technique. Business and Social Sciences, 1(1), 1-11.

17. Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., ... & Tenenbaum, J. B. (2020). ThreeDWorld: A platform for interactive multi-modal physical simulation. arXiv preprint arXiv:2007.04954. Retrieved from https://arxiv.org/abs/2007.04954

18. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2021). Performance evaluation of wireless sensor networks using the wireless power management method. Journal of Computer Science Applications and Information Technology, 6(1), 1–9.

19. Azmi, S. K. (2021). Spin-Orbit Coupling in Hardware-Based Data Obfuscation for Tamper-Proof Cyber Data Vaults. Well Testing Journal, 30(1), 140-154.

20. Narapareddy, V. S. R., & Yerramilli, S. K. (2022). RISK-ORIENTED INCIDENT MANAGEMENT IN SERVICE NOW EVENT MANAGEMENT. International Journal of Engineering Technology Research & Management (IJETRM), 6(07), 134-149.

21. Hendriksen, M., Bleeker, M., Vakulenko, S., van Noord, N., & Kuiper, E. (2021). Extending CLIP for category-to-image retrieval in e-commerce. Proceedings of the IEEE/CVF International Conference on Computer Vision, 10654–10663. https://doi.org/10.1109/ICCV48922.2021.01045

22. Karvannan, R. (2023). Real‑Time Prescription Management System Intake & Billing System. International Journal of Humanities and Information Technology, 5(02), 34-43.

23. Prabaharan, G., Sankar, S. U., Anusuya, V., Deepthi, K. J., Lotus, R., & Sugumar, R. (2025). Optimized disease prediction in healthcare systems using HDBN and CAEN framework. MethodsX, 103338.