AI-Enabled Big Data Analytics for Digital Tourism Management

Main Article Content

Phanish Lakkarasu
Dhanaraj Sathiri

Abstract

Smart Tourism constitutes a response to the growth of visitation in urban agglomerations and heritage sites, focusing on enhancing the visitor experience through innovation and technology. AI-driven predictive analytics are applied to Big Data sources, delivering explorative and prescriptive insights for tourism management. Drivers of success include data-sharing culture, trust among stakeholders, hardware infrastructure, model accuracy, and system maturity level. AI-driven Big Data Analytics empower users to harness vast data sources and extract meaningful information, enabling discovery and actionable recommendations. Four supporting mechanisms—User-Centric Design, Data-Driven Decision Making, Service-Dominant Logic, Data Science—guide the development of AI-driven predictive analytics methods


Mechanisms that enhance the predictive capability of visitor demand capture data from different domains and undergo data preparation and modelling. Demand prediction generates historical, real-time, and anticipated demand at multiple levels of granularity and time scales. These inputs help Personalisation and Recommender Analytics understand visitor behaviours and preferences, providing context-sensitive personal recommendations. AI-driven Big Data tourism Predictive Analytics are deployed in urban destination management and cultural tourism settings. Urban destinations use Big Data sources to analyse crowd dynamics, stakeholder interactions, and tourism flows. Cultural tourism Demand-Personalisation Analytics improve visitor experience, conservation of resources, and effectiveness of interpretation

Article Details

Section

Articles

How to Cite

AI-Enabled Big Data Analytics for Digital Tourism Management. (2024). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(6), 11608-11621. https://doi.org/10.15662/IJRPETM.2024.0706021

References

1. Buhalis, D. (2003). eTourism: Information Technology for Strategic Tourism Management. Pearson Education.

2. Choudhury, A., & Asan, O. (2020). Role of artificial intelligence in patient safety outcomes. JMIR Medical Informatics, 8(7).

3. Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: foundations and developments. Electronic Markets, 25(3), 179–188.

4. Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179–188.

5. Sheelam, G. K., & Koppolu, H. K. R. (2024). From Transistors to Intelligence: Semiconductor Architectures Empowering Agentic AI in 5G and Beyond. Journal of Computational Analy- sis and Applications(JoCAAA), 33(08), 4518-4537.

6. Li, Y., Hu, C., Huang, C., & Duan, L. (2017). The concept of smart tourism in the context of tourism information services. Tourism Management, 58, 293–300.

7. Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage.

8. McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60–68.

9. Agentic AI in Data Pipelines: Self Optimizing Systems for Continuous Data Quality, Performance and Governance. (2024). American Data Science Journal for Advanced Computations (ADSJAC) ISSN: 3067-4166, 2(1).

10. Wang, Y., Li, H., & Li, J. (2013). Big data analytics in tourism. Journal of Travel Research, 52(4), 441–454.

11. Sigala, M. (2018). Social media and customer engagement in the tourism industry. Tourism Management, 68, 327–336.

12. Meda, R. (2024). Agentic AI in Multi-Tiered Paint Supply Chains: A Case Study on Efficiency and Responsiveness. Journal of Compu-tational Analysis and Applications (JoCAAA), 33(08), 3994-4015.

13. Gottimukkala, V. R. R. (2023). Privacy-Preserving Machine Learning Models for Transaction Monitoring in Global Banking Networks. International Journal of Finance (IJFIN)-ABDC Journal Quality List, 36(6), 633-652.

14. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts. International Journal of Information Management, 35(2), 137–144.

15. Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics. Harvard Business School Press.

16. Nagabhyru, K. C. (2024). Data Engineering in the Age of Large Language Models: Transforming Data Access, Curation, and Enterprise Interpretation. Computer Fraud and Security.

17. Pan, B., MacLaurin, T., & Crotts, J. (2007). Travel blogs and destination marketing. Journal of Travel Research, 46(1), 35–45.

18. Neuhofer, B., Buhalis, D., & Ladkin, A. (2015). Smart technologies for personalized experiences. Tourism Management, 50, 146–159.

19. Keerthi Amistapuram. (2023). Privacy-Preserving Machine Learning Models for Sensitive Customer Data in Insurance Systems. Educational Administration: Theory and Practice, 29(4), 5950–5958. https://doi.org/10.53555/kuey.v29i4.10965.

20. Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment analysis in tourism. Tourism Management, 75, 77–90.

21. Nagubandi, A. R. (2023). Advanced Multi-Agent AI Systems for Autonomous Reconciliation Across Enterprise Multi-Counterparty Derivatives, Collateral, and Accounting Platforms. International Journal of Finance (IJFIN)-ABDC Journal Quality List, 36(6), 653-674.

22. Mariani, M., Borghi, M., & Gretzel, U. (2019). Online reviews and big data in tourism. International Journal of Contemporary Hospitality Management, 31(10), 3743–3765.

23. IT Integration and Cloud-Based Analytics for Managing Unclaimed Property and Public Revenue. (2024). MSW Management Journal, 34(2), 1228-1248.

24. Guntupalli, R. (2024). AI-Powered Infrastructure Management in Cloud Computing: Automating Security Compliance and Performance Monitoring. Available at SSRN 5329147.

25. Sun, S., Wei, Y., Tsui, K. L., & Wang, S. (2019). Forecasting tourist arrivals using big data. Annals of Tourism Research, 74, 32–46.

26. Nilashi, M., Ibrahim, O., Yadegaridehkordi, E., et al. (2019). Recommendation systems in tourism. Information & Management, 56(4), 1–19.

27. Aitha, A. R. (2024). Generative AI-Powered Fraud Detection in Workers' Compensation: A DevOps-Based Multi-Cloud Architecture Leveraging, Deep Learning, and Explainable AI. Deep Learning, and Explainable AI (July 26, 2024).

28. Jovicic, D. Z. (2019). From smart tourism to smart destinations. Tourism Review, 74(2), 184–190.

29. Varghese, A., & Anjali, M. (2020). AI applications in tourism. Journal of Tourism Futures, 6(3), 217–229.

30. Emerging Role of Agentic AI in Designing Autonomous Data Products for Retirement and Group Insurance Platforms. (2024). MSW Management Journal, 34(2), 1464-1474.

31. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

32. Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.

33. Aitha, A. R. (2023). CloudBased Micro services Architecture for Seamless Insurance Policy Administration. International Journal of Finance (IJFIN)-ABDC Journal Quality List, 36(6), 607-632.

34. Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274–279.

35. Wang, D., Li, X., & Li, Y. (2013). China’s smart tourism destination initiative. Tourism Management, 36, 59–70.

36. Meda, R. (2023). Intelligent Infrastructure for Real-Time Inventory and Logistics in Retail Supply Chains. Educational Administration: Theory and Practice.

37. Yang, Y., Pan, B., & Song, H. (2014). Predicting hotel demand. International Journal of Hospitality Management, 40, 20–28.

38. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2–9.

39. Segireddy, A. R. (2024). Machine Learning-Driven Anomaly Detection in CI/CD Pipelines for Financial Applications. Journal of Computational Analysis and Applications, 33(8.

40. Leung, D., Law, R., van Hoof, H., & Buhalis, D. (2013). Social media in tourism and hospitality. Journal of Travel & Tourism Marketing, 30(1–2), 3–22.

41. Rongali, S. K., & Kumar Kakarala, M. R. (2024). Existing challenges in ethical AI: Addressing algorithmic bias, transparency, accountability and regulatory compliance.

42. OECD. (2020). Tourism Trends and Policies. OECD Publishing.

43. Varri, D. B. S. (2024). Adaptive and Autonomous Security Frameworks Using Generative AI for Cloud Ecosystems. Available at SSRN 5774785.

44. UNWTO. (2021). Big Data and Tourism Statistics.

45. Singireddy, J. (2024). AI-Enhanced Tax Preparation and Filing: Automating Complex Regulatory Compliance. European Data Science Journal (EDSJ) p-ISSN 3050-9572 en e-ISSN 3050-9580, 2(1)..

46. Heerschap, N., Ortega, S., Prieto, E., & Kourtit, K. (2018). Big data, smart tourism cities. Journal of Urban Technology, 25(3), 3–20.

47. Baggio, R., & Del Chiappa, G. (2014). Real and virtual relationships in tourism. Information Technology & Tourism, 14(1), 3–19.

48. Deep Learning-Driven Optimization of ISO 20022 Protocol Stacks for Secure Cross-Border Messaging. (2024). MSW Management Journal, 34(2), 1545-1554.

49. Sun, Y., Li, X., & Zhao, M. (2020). Deep learning in tourism demand prediction. Neural Computing and Applications, 32(7), 2435–2448.

50. Chava, K. (2024). The Role of Cloud Computing in Accelerating AI-Driven Innovations in Healthcare Systems. European Advanced Journal for Emerging Technologies (EAJET)-p-ISSN 3050-9734 en e-ISSN 3050-9742, 2(1).

51. Tussyadiah, I. (2020). A review of research into automation in tourism. Journal of Travel Research, 59(5), 823–841.

52. Buhalis, D., & Sinarta, Y. (2019). Real-time co-creation in tourism. Journal of Travel Research, 58(7), 1043–1056.

53. Kushvanth Chowdary Nagabhyru. (2023). Accelerating Digital Transformation with AI Driven Data Engineering: Industry Case Studies from Cloud and IoT Domains. Educational Administration: Theory and Practice, 29(4), 5898–5910. https://doi.org/10.53555/kuey.v29i4.10932.

54. Li, J., Xu, L., Tang, L., Wang, S., & Li, L. (2018). Big data in tourism research. Tourism Management, 68, 301–323.

55. Mashetty, S., Challa, S. R., ADUSUPALLI, B., Singireddy, J., & Paleti, S. (2024). Intelligent Technologies for Modern Financial Ecosystems: Transforming Housing Finance, Risk Management, and Advisory Services Through Advanced Analytics and Secure Cloud Solutions. Risk Management, and Advisory Services Through Advanced Analytics and Secure Cloud Solutions (December 12, 2024).

56. Koo, C., Shin, S., Gretzel, U., Hunter, W. C., & Chung, N. (2016). Conceptualization of smart tourism. Asia Pacific Journal of Information Systems, 26(4), 561–582.

57. Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier.

58. Keerthi Amistapuram. (2024). Federated Learning for Cross-Carrier Insurance Fraud Detection: Secure Multi-Institutional Collaboration. Journal of Computational Analysis and Applications (JoCAAA), 33(08), 6727–6738. Retrieved from https://www.eudoxuspress.com/index.php/pub/article/view/3934.

59. Chen, Y., Wang, Y., & Yan, X. (2016). Tourism flow prediction with big data. Physica A, 444, 495–507.

60. Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking and tourism. Expert Systems, 32(3), 353–366.

61. Rongali, S. K. (2023). Explainable Artificial Intelligence (XAI) Framework for Transparent Clinical Decision Support Systems. International Journal of Medical Toxicology and Legal Medicine, 26(3), 22-31.

62. Zhang, Y., Zhang, H., & Zhang, J. (2018). Big data analytics and tourism competitiveness. Current Issues in Tourism, 21(18), 2108–2123.

63. A Scalable Web Platform for AI-Augmented Software Deployment in Automotive Edge Devices via Cloud Services. (2024). American Advanced Journal for Emerging Disciplinaries (AAJED) ISSN: 3067-4190, 2(1).

64. Camilleri, M. A. (2018). The Tourism Industry: An Overview. Springer.

65. Baggio, R. (2016). Big data analytics in tourism. Information Technology & Tourism, 16(1), 1–5.

66. Inala, R. AI-Powered Investment Decision Support Systems: Building Smart Data Products with Embedded Governance Controls.

67. Koseoglu, M. A., Mehraliyev, F., Xiao, H., & Okumus, F. (2019). Intellectual connections in tourism big data. Tourism Management, 72, 190–203.

68. Mariani, M., & Visani, F. (2019). Embedding big data analytics in tourism firms. Tourism Review, 74(4), 706–722.

69. Lahari Pandiri, "AI-Powered Fraud Detection Systems in Professional and Contractors Insurance Claims," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), DOI 10.17148/IJIREEICE.2024.121206.

70. Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand. Tourism Management, 59, 502–513.

71. Sigala, M. (2020). Tourism and COVID-19 impacts. Journal of Business Research, 117, 312–321.

72. Koppolu, H. K. R., & Sheelam, G. K. (2024). Machine Learning-Driven Optimization in 6G Telecommunications: The Role of Intelligent Wireless and Semiconductor Innovation. Global Research Development (GRD) ISSN: 2455-5703, 9(12).

73. OECD. (2019). Enhancing Tourism Competitiveness.

74. Becken, S., & Hughey, K. F. D. (2013). Linking tourism and sustainability. Tourism Management, 36, 208–218.

75. Paleti, S. (2024). Transforming Financial Risk Management with AI and Data Engineering in the Modern Banking Sector. American Journal of Analytics and Artificial Intelligence (ajaai) with ISSN 3067-283X, 2(1)..

76. Law, R., Leung, D., & Buhalis, D. (2009). Information technology applications in hospitality. Cornell Hospitality Quarterly, 50(3), 308–322.

77. Guntupalli, R. (2024). Enhancing Cloud Security with AI: A Deep Learning Approach to Identify and Prevent Cyberattacks in Multi-Tenant Environments. Available at SSRN 5329132.

78. Gretzel, U., & Scarpino-Johns, M. (2018). Destination resilience and smart tourism. Journal of Destination Marketing & Management, 9, 259–267.

79. Höpken, W., & Fuchs, M. (2017). Data science applications in tourism. Information Technology & Tourism, 17(1), 1–4.

80. Inala, R. Revolutionizing Customer Master Data in Insurance Technology Platforms: An AI and MDM Architecture Perspective.

81. Sigala, M., Rahimi, R., & Thelwall, M. (2019). Big data and sentiment analysis in tourism. Journal of Travel Research, 58(7), 1111–1127.

82. Rongali, S. K. (2024). Federated and Generative AI Models for Secure, Cross-Institutional Healthcare Data Interoperability. Journal of Neonatal Surgery, 13(1), 1683-1694.

83. Li, G., Song, H., & Witt, S. F. (2005). Recent developments in tourism demand modeling. Tourism Management, 26(4), 467–482.

84. Amistapuram, K. (2024). Generative AI in Insurance: Automating Claims Documentation and Customer Communication. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 15(3), 461–475. https://doi.org/10.61841/turcomat.v15i3.15474.

85. Baggio, R., Scott, N., & Cooper, C. (2010). Network science and tourism. Annals of Tourism Research, 37(3), 802–827.

86. AI and ML-Driven Optimization of Telecom Routers for Secure and Scalable Broadband Networks. (2024). MSW Management Journal, 34(2), 1145-1160

87. Chen, C. F., & Tsai, D. (2007). How destination image affects satisfaction. Tourism Management, 28(4), 1115–1122.

88. Varri, D. B. S. (2022). A Framework for Cloud-Integrated Database Hardening in Hybrid AWS-Azure Environments: Security Posture Automation Through Wiz-Driven Insights. International Journal of Scientific Research and Modern Technology, 1(12), 216-226.

89. Gretzel, U., Werthner, H., Koo, C., & Lamsfus, C. (2015). Conceptual foundations for smart tourism. Electronic Markets, 25(3), 179–188.

90. Hall, C. M., & Williams, A. (2008). Tourism and Innovation. Routledge.

91. Garapati, R. S. (2023). Optimizing Energy Consumption in Smart Build-ings Through Web-Integrated AI and Cloud-Driven Control Systems.